
I

Robot Project

EV3EAL

Group #20 - Stream 8

Cheran #21013444

Savyo #21006924

Prabhjot #21005282

Sachin #20999003

MTE 100 AND MTE 121

Tuesday, December 6th, 2022

 Group 20 Stream 8

2

Summary

This report outlines the mechanical and software design process as the group created a card-dealing robot,

nicknamed EV3eal. Furthermore, it thoroughly discusses each mechanical progress update and the

software’s functions. Finally, this report goes over one’s recommendations if the group were to attempt

this project again.

Acknowledgments

TA help

Online images for clamp system

Contents
Introduction.. 5

Scope.. 5

Constraints and Criteria ... 7

Requirements ... 7

Constraints ... 7

Valuable and Invaluable Constraints and Requirements ... 7

Mechanical Design and Implementation ... 8

Overall description of our mechanical design ... 8

Updates and Changes to the Design .. 8

Progress 1 (November 8th) .. 8

Progress 2 (November 10th – 12th) ... 10

Progress 3 (November 14th) .. 12

Progress 4 (November 16th): ... 14

Progress 5 (November 18th): ... 17

Progress 6 (November 21st): ... 19

Progress 7 (November 22nd): .. 20

Progress 8 (November 23rd): ... 21

Software Design and Implementation ... 22

 Group 20 Stream 8

3

Description of the software .. 22

Task list .. 22

Functions.. 23

Trade-offs .. 30

Choice of variable type .. 30

Testing ... 31

Problems .. 31

Verification .. 32

Final Constraints List ... 32

Project Plan .. 33

Conclusion ... 34

Recommendations .. 34

Mechanical Design: ... 34

Software Recommendations: ... 34

Back Matter ... 35

Appendix A .. 35

List of Figures

Figure 1: Concept sketches .. 9
Figure 2: Build from first day .. 9
Figure 3: Concept sketch for actual dealer .. 11

 Group 20 Stream 8

4

Figure 4: First dealer model ... 12
Figure 5: Card holding mechanism .. 13
Figure 6: Top view of initial build ... 13
Figure 7: Clamp system and ramp included .. 15
Figure 8: Touch Sensor included ... 16
Figure 9: Solidworks design for clearance .. 17
Figure 10: Clearance installed on robot ... 18
Figure 11: Reworked design .. 19
Figure 12: Final Clamp system .. 20
Figure 13: Final Dealer System ... 21
Figure 14: Final Build .. 22
Figure 15: Flowchart for Test Function ... 23
Figure 16: Flowchart Color sensor .. 24
Figure 17: Rotating and deal flow chart .. 25
Figure 18: ... 26
Figure 19: ... 27
Figure 20: ... 28
Figure 21: ... 28
Figure 25: ... 31
Figure 26: ... 32

 Group 20 Stream 8

5

Introduction

In any casual card game, the role of the dealer is usually something people would prefer to avoid. The aim
for this project is to create a card dealing robot, which automates the dealing process while preventing
cheating and human error. Throughout this report, the team will discuss their process for EV3eal, a robot
card dealing system!

Scope

The robot's main functionality is to hold a deck of cards, receive data from the user about the number of
players playing the game and the number of cards needed to be dealt. Then, start dealing the number of
cards needed to the number of players with such speed and precision comparable to a human.

1. A general procedure is as follows:

2. Human puts the cards into the card holder, the clamp fastens onto the deck of cards

3. Code is run, the robot moves, rotating, forward, and backwards, before starting the actual dealing

procedure. This is to inform the user the robot is preparing to deal and is completely functional.

4. User inputs the number of players.

5. Robot drives towards center until it reaches red dot

6. Robot begins to rotate, dealing cards to each player

7. Robot stops dealing and returns with the remainder of cards, dropping off any excess

8. Robot escapes the playing area to allow the players to begin playing!

The robot receives 5 inputs:

o Colour Sensor
o Gyro
o Touch sensor
o Motor encoders
o Push buttons (player interface

The colour sensor is used to bring the robot from anywhere on the table to the center where it will be able
to deal with the cards. The robot will keep on driving until it stops detecting the color and then it will start
dealing procedure.

 Group 20 Stream 8

6

The touch sensor is used as an emergency mechanism, if the robot is not performing its intended task or if
a card is stuck, the user must push the touch sensor to stop the robot. This also serves as a buffer to
account for the wide variety of unexpected events.

The gyro sensor is used to rotate the robot ‘x’ degrees to be able to deal with any player no matter where
they are sitting. For example, given four players, the robot will rotate 90 degrees and deal to each player.

The motor encoder will be used to measure the distance of how far the robot travels to the center so that it
will be able to drive to its original position, once it is done dealing with the cards needed to be dealt.
Finally, the push buttons are used to receive user input regarding the number of players playing for the
given and the number of cards being dealt in total.

• The robot will use 3 motors. Two motors are used for mobility. Since the robot will be moving

and turning based on the user's inputs and other sensors, two motors are required so that the robot
can functionally rotate and drive. The third motor is used for the dealing system. Based on the
mechanical design the motor will turn and push the cards out one at a time.

• The robot will recognize when all the tasks are complete, when all the cards specified and

inputted by the user are distributed evenly between all the players. If any error occurs during the
process of dealing, the user can press the touch sensor to emergency shutdown the robot. If not,
the regular shutdown process will occur once the robot reaches its original position.

Changes from previous designs:

The group made various changes since the original design, particularly, it was underestimated
how much time the build process would take. This led us to lower than scope under the guidance of the
TA’s.

• The first change to the scope was limiting it. The group had set the goals remarkably high at first,

wanting to shuffle cards and then deal. After receiving feedback from Professor Consell and the
informal report, the group followed the advice to limit this to strictly dealing.

• Secondly, the group elected to limit the scope by switching the idea from a forklift to a garbage

dump-type system. After the formal presentation where the group discussed more thoroughly the
idea of a forklift

• Lastly, an additional change to the scope from the earlier stages was removing the addition of the
ultrasonic sensor. The original use for the ultrasonic sensor was to detect where the players were
sitting so that the robot could distribute the cards evenly when it detected a player. However, with
further testing and building, it was concluded that the ultrasonic sensor's use was redundant, as
the inputs already included were able to complete the ultrasonic sensor's job without its addition.
The colour sensor can bring the robot the center and then the gyro will turn the robot
(360/number of player) degrees and the motor encoders will drive the robot to its original
position, so it as concluded that addition of ultrasonic sensor was unnecessary so therefore it was
removed from the final build.

 Group 20 Stream 8

7

Constraints and Criteria

Requirements

• Fairly fast → comparable to a human, the group does not want the robot to be a

downgrade to the average human dealer
o Although it is exceedingly difficult to match the robot to a human in

terms of a very dexterous job such as dealing, the requirement is that the
robot is not a significant downgrade from a human.

• Precision/Adaptability → Equal spaced cards
o With an unreliable gyro it is difficult to get complete accuracy, but the

group wants there to be distinct enough piles so that the user can identify
who’s pile is who's.

Constraints

• Lego pieces cannot handle thin paper well as there are varying decks, and the group

wants to ensure only 1 card is handed each round. One of the changes the group made
was switching decks to find the best quality deck that provides the most consistent
results.

• Insert video of us struggling with it dealing with cards poorly

• The ultrasonic was originally a constraint to the build due to lack of its precision however

with further testing and progression in the build the ultrasonic was removed

Valuable and Invaluable Constraints and Requirements

• The constraints and criteria that helped us guide in the project design was precision: the

focus of the design was to deal cards fast but mainly precisely because lack of precision
defeats the purpose of the robot, as dealing cards at random does not solve any problems.

• The constraints not valuable in implementing the project design were the type of

materials. This project was extremely limited with materials that were given to us

 Group 20 Stream 8

8

initially. The project was fully constructed with Legos and one 3D printed part. Lego
parts are not able to handle thin paper very well. The parts also tend to not be able to
resist much weight, so part breaking was another issue.

Mechanical Design and Implementation

Overall description of the mechanical design

The major mechanical goal was to compete with a regular human while having reasonable speed

and consistency.

The robot had many major mechanical design changes throughout the design process, which led
to the final design. Throughout the designing process group faced many difficult challenges in mechanical
design, as Lego is not the best material to engineer complex projects, the parts did not often perform in
the intended way that they were supposed to.

Although some parts were difficult to assemble and kept falling apart, making the mechanical
process challenging. The group had difficulty keeping a straight dealing platform but through continuous
testing and design changes the group was able to design a functional and aesthetically pleasing final
design.

Updates and Changes to the Design

Progress 1 (November 8th)

Chassis Design:
The group started the Initial stages of the design with some concept sketches of how the robot
will potentially look like. The sketches included potential motor and sensor placements on the
robot (Figure 1). As the group finalized the ideas and decided on a sketch. The group began the
construction stage of the robot robot.

 Group 20 Stream 8

9

FIGURE 1: CONCEPT SKETCHES

The group began the chassis assembly through connecting a rod with two wheels to a motor. This
was the start of the card dealing compartment. The motor would turn on causing the wheels to
spin and through friction the wheels would pull on the cards to deal.

FIGURE 2: BUILD FROM FIRST DAY

 Group 20 Stream 8

10

Motor Drive Design
While looking at the different design ideas, the initial thoughts were to keep the robot stationary
meaning that the robot would only require one motor for the dealing process.

Sensor attachment design
Since this was the beginning stages of the design a lot of the sensor positions on the robot were
still undecided. One of the main design ideas, however, was to use the colour sensor to measure
when a card was handed out or not. The use of gyro and touch was required for the build, but
their placement was still undecided.

Overall assembly
To conclude the overall assembly for the first progress update, the group was able to construct a
potential design for the card dealing process (Figure 2) by connecting a rod to a rotating motor
which would cause it to spin. The group added a wheel to the spinning rod so that the friction will
be able to pull individual cards and deal them.

Progress 2 (November 10th – 12th)

Chassis Design

Recorded some measurements and calculations to develop a surrounding basis fit perfectly to hold the
deck of cards. As displayed in (figure 3) group developed the initial steps to a working dealing system for
the robot.

Motor Drive Design

Before the initial meeting with the teaching assistants, the group was discussing the potential of adding
two additional motors to the current design to have a potential clamp and forklift system for shuffling and
dropping the cards after the robot was done dealing.

 Group 20 Stream 8

11

FIGURE 3: CONCEPT SKETCH FOR ACTUAL DEALER

Sensor Attachment Design

The main change in this progress update was changing the function of the colour sensor. Instead of using
the colour sensor to check if a card was dealt with or not. The colour sensor was used as a guide for the
robot to stop somewhere near the center of the table. The group realized that through software and
mechanical components they would be able to control the dealing of individual cards

Overall Assembly

To conclude this progress update, the overall assembly of the dealing system was starting to take shape.
The group developed a working rotating rod to deal cards and a surrounding basis to hold the deck. These
two initial progress reports consisted mostly of brainstorming, sketching, calculating and design and less
on the overall assembly. This was done because any good build requires these preliminary steps to have
good design and functionality.

 Group 20 Stream 8

12

FIGURE 4: FIRST DEALER MODEL

Progress 3 (November 14th)

Chassis Design:
A major update to the chassis occurred when the group began to design the system to support the cards.
Seeing it was needed to find Lego to not only tightly clamp onto the sides of the cards, the group also had
the goal of making it adjustable for various card sizes. However, this secondary goal was not
accomplished in the preliminary chassis design. When designing the chassis to hold the cards, the group
needed long enough Lego pieces to fit the length of a card, and enough distance in between the center for
two wheels to rotate and distribute the cards. Although this two-wheel design was later changed to just be
a single wheel dealer as the group achieved more precision with this layout.

 Group 20 Stream 8

13

FIGURE 5: CARD HOLDING MECHANISM

Furthermore, the group had to build the chassis around the motor that powered the card dealer. This
proved to be one of the most challenging parts of our mechanical build. This proved to be challenging as
having a long shaft connected to the motor caused that shaft to be bent down drastically when connected
to any sort of weight, this led to significant bending in our build that the group soon recognized would
prevent the cards from even exiting the dealer.

FIGURE 6: TOP VIEW OF INITIAL BUILD

 Group 20 Stream 8

14

Motor Drive Design:

Extending from the chassis, this was the first real test of whether the motor was able to shoot out cards.
Since the group did not have any counterweight. The group expected the motor to rotate and push out a
bulk of cards at one time. The group used the EV3_SystemTEST and pushed down an appropriate amount
of pressure onto the cards to see if our wheel system was able to generate enough power to push the cards
out. This preliminary test confirmed that our wheel sketches would be the basis for our later designs.

Overall assembly:
In summary our overall assembly saw its first major change in the incorporation of actual cards. This was
significant as it allows us to measure a perfect fit for the cards, as well as measure enough clearance for
the wheels to contact the base of the cards and push them out accordingly.

Progress 4 (November 16th):

Chassis Design:
After designing the fundamental chassis, the group had to begin thinking about how the cards would be
distributed and how they would counteract the force of the wheel pushing the cards forward, in addition to
preventing too many cards from being at once. This is where it was elected to include a counterweight
and rubber band system. Referring to earlier sketches, the group also designed and implemented it to
direct the cards to the respective player.

The idea behind the counterweight was to have consistent weight being applied to the cards, like that of
how the group used the hands in the previous example so just enough pressure would be applied so only 1
card could be shot out at a time. group soon found out that using a wheel with a rubber band was not
precise enough for one card to come out at a time and a complete dealer redesign was needed (see
progress 7). Moreover, the rubber band connected to the base design (that was directly connected to the
robot) allowed for a tension force that would tighten the wheel back onto the cards.

As previously mentioned, the ramp was designed to direct the cards to the player. The group quickly
noticed, however, that this piece would be better off 3D-printed as it would allow for a cleaner path for
the player, or ideally, no ramp at all, and the card is shot directly to the player.

 Group 20 Stream 8

15

FIGURE 7: CLAMP SYSTEM AND RAMP INCLUDED

The main concerns of this updated build were stability and the clamp system, the group decided to
continue with this design until the software was complete. It was recognized that this unstable design
coupled with a clamp that was not tense enough to pressure each card would lead to problems down the
line.

 Sensor Attachment Design:

 Group 20 Stream 8

16

FIGURE 8: TOUCH SENSOR INCLUDED

As the group began to approach the software testing phase, the group wanted to incorporate a testing
procedure. Specifically, the group included the touch sensor as an emergency exit button. This button
allowed us to exit the code without any concern, this was used to prevent any damage to the cards, motor,
and overall design, particularly in the initial stages of testing.

The touch sensor can be seen in front of the gyro sensor, on the right side of the robot.

Overall Assembly:

Two major changes can be seen in the overall assembly. Firstly, the group decided to switch to a one-
wheel design for the motor connecting to the cards. This one-wheel design as seen below, allowed us to
help with the previous problem of having too much weight on the shooter side of the robot. Moreover,
one wheel still provided us with enough power to push out the cards. Finally, as mentioned in the
previous progress update, the axle connected to the power sagged down significantly, in turn reducing the
weight helped with this.

 Group 20 Stream 8

17

This provided a temporary solution to the sagging issue, however, the group soon noticed that the Lego
pieces would ‘weaken’ over time and thus require us to incorporate more of a counterweight system and
be a much stronger basis to hold our shooter. The group considered placing our shooting device on top of
the Lego robot, however, this would prevent us from incorporating our user interface to put in the number
of players and cards, so the group decided to make work with the currently unstable side dealer.

Secondly, it was realized that a clearance design was required to be able to fit a single card at a time.
After running the System EV3 test, although the motor power was not accurate to what the group would
later use (a lot higher) the group was able to see that with the current clamp system, it was pushing the
whole deck instead of a single card at once, thus the group decided to complete our WATiMake training
and 3D print a piece that provides just enough clearance to fit 1 card under it.

Progress 5 (November 18th):

Chassis Design:

After creating the initial design, the group began to realize that it would rely heavily on having an
appropriate clearance system. However, the group did not have the appropriate Lego to design the piece
so that only a card would fit through! Thus, the group decided it was time to get 3D modelling. After
using calipers to dimension the piece, the group went to Solid works, referencing online dimensions for
the hard to dimension hole.

FIGURE 9: SOLIDWORKS DESIGN FOR CLEARANCE

 Group 20 Stream 8

18

When the group went to print, to print, the piece was changed to not be hollow, as the printer could not
design something so thin. Below the 3D print can be seen installed to the build, although at first confident
that this would ensure only 1 card is pushed out at a time, it led to the jamming of cards with the dealer,
as the clearance was not perfect. Thus, as seen later in our mechanical design portion, the group
repurposed the print to help serve as a part of the ramp.

FIGURE 10: CLEARANCE INSTALLED ON ROBOT

Overall Assembly:

At this point the initial design was complete to the point the group had sketched it to be, however, the
group soon learned that this design was not capable of dealing one card at a time consistently, requiring
us to redesign the individual parts of our assembly. The redesign of the clamp mechanism is discussed in
the next progress update.

 Group 20 Stream 8

19

Progress 6 (November 21st):

Chassis Design

This was the most major step in the chassis design in our whole project. As the group discussed in
progress 5 our initial chassis design was done, and it followed our sketches and previous
planning. However, it possessed one major flaw, due to all the weight on one side of the robot,
the dealing side was drastically sagging to one side and the robot was not as flat as the group
wanted it to be. Another flaw was with the way the group assembled our clamp system, our clamp
proved to be problematic because as the group started running tests, it was very inconsistent in
the way it dealt. It was either putting too much force on the card where the whole deck was being
dealt at once, or no force and the whole deck was staying still and not being dealt. These two
flaws combined made the robot initially use less because the problem the group was trying to fix
was to automate the job of a dealer, but the group could not solve that problem because the robot
was either not dealing at all or dealing very inconsistently.

Even though the due date was swiftly approaching, the group decided that together if everyone
worked hard together, the group would be able to resign the whole chassis of the robot. The robot
disassembled the whole previous design and began brainstorming new ideas. Since the group
became more experienced throughout this project, the group quickly redesigned a new and better
clamp that included rubber bands. The group also decided that it was need to build a
counterweight on the opposite side of the card dealer to reduce sagging.

FIGURE 11: REWORKED DESIGN

Overall Assembly

Overall, this was the most stressful, yet most effective and successful progress in our project. the
group quickly realized that when working with Legos it is very difficult to have a working design
as the group intended it to be. In the most challenging time in our robot assembly, the group was

 Group 20 Stream 8

20

able to come close together as a group and work the best they have ever worked. The group was
able to successfully redesign a new clamp design and finalize all our ideas before the group got to
the final build.

Progress 7 (November 22nd):

Motor Drive Design:

Having realized that a major problem of our previous dealer was the axle connected to the motor bending
under the weight of the dealing device, the group decided to move the motor behind the wheel instead of
beside the wheel. Furthermore, the group used a similar design to before when it came to building a base
for our motor, but now, as both the motor and wheel were facing the same direction, the axle did not bend
under the weight. The group accomplished this through using gears to convert the motor’s forward
motion back onto the tire allowing it to also rotate forward [2]. This gear design can be seen below.

FIGURE 12: FINAL CLAMP SYSTEM

Overall Assembly:

At this stage, the group started testing the dealer's functionality without any additional software (i.e., did
not input many players or have the robot rotate).

 Group 20 Stream 8

21

While testing this the group realized that they had to make some major design decisions and prioritize the
dealer’s ability to deal one card at a time as consistently as possible. The design below, frequently dealt in
clumps, pushing out 2-4 cards at once, and oftentimes got jammed against the 3D printed clearance. After
realizing a re-work was needed, it was brainstormed what to do as the clamp system was failing. The
group decided on sticking with the rubber bands for tension but instead use a different piece, after looking
online for clamp designs, the group went with two ‘L ‘connectors (pictured below), as it had a flatter
surface that would be flush with each individual card, in addition to using our rubber bands in a crisscross
configuration for more tension. Finally, the group replaced the deck of cards used to eliminate any other
potential causes for error.

FIGURE 13: FINAL DEALER SYSTEM

This new system pointed us in the right direction, it was a lot more consistent at dealing one card at a
time. The next stage was perfecting the wait time and motor power, so it can deal only one card every
time!

Progress 8 (November 23rd):

Chassis Design

The group perfected our software timings. It was noticed the new design was performing up to
par. It was meeting expectations during testing, except for some inconsistencies. The group
noticed that if there was an error early in the dealing process, the error kept on getting worse as
more turns occurred. The group understood that gyro sensors will not be as accurate as they were

 Group 20 Stream 8

22

wanted to be. Our next best option was to add more counterweight on the opposite side of the
robot, which would make it more stable and improve the turns slightly

FIGURE 14: FINAL BUILD

Overall Assembly

The overall assembly of the robot consisted of a new clamp system as well as a counterweight on
the opposite side. After perfecting the mechanical, a few software tests completed our final robot
project. The group had difficulty in consistently dealing single cards; the issue was later cleared
with some adjusting of the timers.

Software Design and Implementation

Description of the software

Task list
The tasks required from our software to perform during the demo are as follows.

- Robot starts up

- Robot does test motion (moves forward, backward, spins)

 Group 20 Stream 8

23

- User enters number of players

- User enters number of cards

- Robot goes to colored tape at table centre

- Deals to the respective number of players

- Robot exits game playing area after dealing

- Robot dumps out remaining cards

- Robot displays number of cards dealt

- Touch sensor to be used as an emergency exit

Throughout the entirety of the project most of the requirements of the robot did not change. However, the
task of the robot adjusting itself using an ultrasonic sensor was taken out because it did not improve the
accuracy of the dealing by a notable degree.

Functions

Test_ Function (parameters: none, return type void)
The test function was written by Sachin. This function performs a test motion in the beginning to ensure

that the gyro and motors are working correctly while carrying a deck of cards.

FIGURE 15: FLOWCHART FOR TEST FUNCTION

 Group 20 Stream 8

24

Drive_ to _Colour (parameters: int colour, return type float)

This function was written by Savyo and takes an input of a number associated with a colour. It then turns
the motors on and drives the robot forward until the colour sensor senses the inputted colour as seen in the
flow chart.

FIGURE 16: FLOWCHART COLOR SENSOR

Rotate _dealer (parameters: int players, return type void):

This function was written by Cheran and takes an input of the number of players in the game and rotates

the robot using the gyro sensor. To calculate the angle to rotate a trivial function is called. An example of

how the angle is calculated is as follows. If there were 10 players, the function would call the trivial

function and divide one rotation (360 degrees) by 10 to rotate the robot by 36 degrees. Note that it rotates

clockwise by setting one motor power to a positive value and the other to a negative value. The

chronological order of how the function works can be seen in the following flow chart.

 Group 20 Stream 8

25

FIGURE 17: ROTATING AND DEAL FLOW CHART

Number_of_players(parameters: none, return type int)

This function was written by Prabhjot and is used to acquire user input to determine the number of players

in the card game. The function requires the user to use the left and right button to increment or decrement

 Group 20 Stream 8

26

the number of players. Each time the right button is clicked the function will increment the counter by 1,

when the enter button is clicked the function will return the counter and exit the function.

FIGURE 18:

Input_error(parameters: none, return type int)

This function was written by Savyo and is used to error check the user input of the number of cards. It

uses a while loop and within the loop calls the number_of_players functions. Once it gets the input from

the user it checks if it meets the condition of less than 12 and greater than 1 player was inputted. If not it

will display that there is an invalid input and iterate through the while loop again. Once a valid input is

given the while loop will break and will return the number of players.

Number_of_cards(parameters: none, return type int):

This function was written by Sachin and is used to acquire user input to determine the number of cards

per person in the card game. The function requires the user to use the left and right button to increment or

decrement the number of cards. Each time the right button is clicked the function will increment the

counter by 1, when the enter button is clicked the function will return the counter and exit the function.

 Group 20 Stream 8

27

FIGURE 19:

Cards_error(parameters: int players, return type int):

This function was written by Cheran and is used to error check the number of cards inputted. It takes in a

parameter of the number of players. It then uses a while loop to ensure that the total number of cards does

not exceed 52. For example, if there are 10 players, within the while loop it will run the number_of_cards

function and then multiply that number of cards per person by 10. If 8 cards were inputted it will multiply

it so that 80 cards are needed total. However, 80 cards exceeds the maximum, in this case an error

message will be outputted on the EV3 display and iterate through the while loop again. Once a valid input

is given the function will return the amount of cards per person.

 Group 20 Stream 8

28

FIGURE 20:

Dispense_cards(parameters: int players, return type void):

This function was written by Prabhjot and is used to dispense 1 round of cards. It uses a for loop for the

number of players. Within 1 iteration of the for loop it calls on the rotate_dealer function to rotate the

dealer to a person. It then turns on motor to dispense a card. It breaks the for loop once each person gets

one card.

FIGURE 21:

 Group 20 Stream 8

29

Remainder Dispense(parameters: int players and cards, return type int)

This function was written by Savyo and is used to dispense an equal amount of cards to each player. First
it uses the modulus operator to ascertain the amount of remaining cards. For example, with 10 players
52%10 will return 2. Which entails that 50/52 cards should be dealt. Then a while loop is used where it
breaks if the number of cards dealt becomes greater than or equal to the maximum amount set beforehand.
Within this while loop the dispense_cards function is used. To keep track of how many cards were dealt a
counter is used that increments by the number of players each iteration. It increments by the number of
players as when the dispense_cards function is called it will deal one card per person. Finally, the
function returns the remainder. This can be seen in the flowchart below.

Exit_code (parameters: int players, float distance, int remainder, return type void)
This function was written by Sachin and performs a set of tasks to end the function of the robot. The robot
reverses out of the playing field (using the inputted distance), deals the remaining card to the side to act as
a bank of cards, displays the number of cards dealt and turns off [3]. This can be seen in the flowchart.

 Group 20 Stream 8

30

Trade-offs
The choice of resetting the Gyro after each rotation was an action that resulted in a trade-off. Doing so,

made it so that the team did not need to implement the incrementing rotation code. However, it did result

in a reoccurring error of a few degrees. Meaning, after many rotations, the robot was off course by a

significant angle. Another trade-off resulted due to the choice of not to implement the ultrasonic sensor.

This forced the user to direct the robot towards a player rather than enabling it to start from any point on

the table's perimeter.

Choice of variable type
A vast majority of the variables used in the team's code were in the form of either floats or integers. The

code required integers to count objects like cards as they are single entities and cannot be in the form of

fractions. Integers were also used in all the for loops in the form of counters. The use of floats can

primarily be found using the distance variables. These variables had recorded the value from the motor

encoder which was then converted to centimeters using pi. This value will not be an exact integer

meaning that it will include a fractional segment as well.

 Group 20 Stream 8

31

Testing
In terms of testing our main code, the group decided to take a similar approach to our MTE-121 tutorials
where the group would test out functions one at a time. The group initially tested the test motion function
to ensure all the motors and sensors were set up properly as well as to check if our robot was driving and
rotating properly. In doing so, it also tested out primary functions which included drive and drive all.
Next, the group began testing our drive_to_colour function. The group expected this function to stop the
robot once it had detected a certain colour. The group had to test this function to ensure the robot did not
drive off a table when the program was run. This function would enable the robot to stop at the Centre of
a table, denoted by the colour. After doing so, werobot's ability to deal a single card at a time by running
the dispense card's function. This test was run to ensure that the cards were being dealt one at a time, as
otherwise it would defeat the purpose of our robot. The testing purposes had a set number of rotations and
cards that the robot would deal with. This function required the most amount of testing and configuring as
the timings would need to be changed each day. The group expected this function to have the robot
dispense a single card at a time while also rotating a certain angle repeatedly with a certain level of
accuracy.

Problems

There were a few problems that occurred with our software. The most prominent issues include the user
input double counting and implementing the emergency exit button.

The card dealer requires a user to use the right and left button to increment or decrement the number of
players and cards that were needed. At first, the function only waited for the button to be clicked. Due to
the speed at which the loops were being iterated through the counter would not increase/ decrease by 1.
Before the user could lift their finger it would count it as 2 or even 3 clicks. To overcome this issue,
added a condition to the function such that it would not go to the next iteration until the button was
released. A while loop was used so that the function would not progress while the button was being
pressed as seen in the image below.

FIGURE 22:

 Group 20 Stream 8

32

The other issue was the implementation of the emergency exit button. The robot uses the touch sensor to
end the program if something were to go wrong. At first the program would not terminate with the touch
sensor while the code was within a loop. For example, while the robot was executing the drive_to_colour
function it would not stop while it was performing the loop to drive till the colour was sensed. It was also
not very practical to add a lot of if statements to check if the touch sensor was clicked. To overcome this,
the group used a separate task to perform multitasking within the code. Alongside the main task a separate
task was executed in tangent to the main that continuously checked for the condition of the touch sensor
being pressed.

FIGURE 23:

Verification

Final Constraints List

Below was our final criteria list, and how the group met each criteria during the demo.

• Completes test motions well

• It did what it was programmed to do. Drove forward, backward, and spun.

• Detects red and stops

• The color sensor stopped precisely at the red tape the group had laid out for it.

• Invalid inputs for number of players are detected and user is informed (i.e., 25 players)

• After inputting an impractical number of players, our robot told the user this is
impossible.

• Deals in general direction to player (distinct piles)

 Group 20 Stream 8

33

• Although the gyro is inconsistent, our robot was able to deal in 3 distinct piles so that the
players were able to tell that a specific pile was theirs.

• Deals to correct number of players

• During the demo the group put 3 players in, and the robot rotated and dealt to the 3
spots.

• Escapes area cleanly

• Our program used the number of players to calculate an angle where cards would not be
so it could escape. This was done cleanly during the demo as no dealt cards were
moved/hit.

• Dumps remainder of cards out

• After escaping it dumped out all excess cards.

• Displays correct number of cards dealt

• The robot displayed 12 cards on the screen (3 players, 4 cards).

Project Plan

One of our main priorities was distributing work evenly, not only so the group could accomplish a major
task but also, so everyone felt involved. Nevertheless, the group did have members work on certain parts
more than others.

▫ The group all created our EGAD project concept sketches and as a group chose the one, the group

wanted to go with.
▫ Prabhjot and Cheran focussed on the early build, while Sachin and Savyo worked on the

slideshows
▫ The all coded at least 2 functions.
▫ During testing the group alternated keeping the robot and trying to improve each part.
▫ Nearing the final build, the group alternated 2 people working on the bot, and 2 people writing

the reflection.

The group would have preferred to have everyone work equally on the mechanical part, however, the
group felt that having all 4 of us working on the build at once only limited our productivity.

 Group 20 Stream 8

34

Conclusion

Overall, as a group everyone was happy with the outcome of the robot considering all the challenges
faced, given that the Lego material is not able to handle thin paper very well, as well as inaccurate sensors
with addition of time constraints and worrying about other classes, the group was able to come out with
functional robot, which solves a problem of automating a dealer's job. Throughout the process the group
faced many challenges such as difficulty of distributing one card at a time, but in the end through
thorough testing of the software and constant changes in the mechanical design the group was able to
come out with a final product.

Some highlights of our mechanical design were adjusting the Lego material to distribute a single card,
this was done with the help of a new clamp system with the assistance of rubber bands, gears, and a thin
clearance just enough to let a single card through

A highlight in our code was the emergency exit function. In any machine there is always a chance for
error, therefore, the group developed a code which takes input form the touch sensor. If the touch sensor
was pressed, then the robot would automatically stop. This is important in case if a card gets stuck or if
the robot deviates from its intended path.

Recommendations

Mechanical Design:

In the end the robot successfully completed the verifications list. Given the Lego material the
robot performed to its best abilities. If there were any changes the group could do to make the
robot perform better, it would be to change the material and get better sensors. If the group used
Tetrix robotics kit instead of Lego in some parts of our robot, our robot would have been more
stable causing less chance for error and sagging. The incorporation of new and better sensors
would have guaranteed our robot almost perfect results since the only thing hindering our build
was the errors in the gyro in every turn

Software Recommendations:

The software design for this project worked flawlessly. It was the mechanical aspect that held the
project back. One change that would have helped the software was starting to test in the earlier
stages of the design to account for any potential issues that may have arisen. The group also
thinks that it would have been a better idea to ensure that the frame was more stable as the group
found that the initial build did not hold up as it was transported.

 Group 20 Stream 8

35

Back Matter

References

[1] C. Bartneck, “Lego brick dimensions and Measurements,” Christoph Bartneck, Ph.D., 15-Jan-2020.
[Online]. Available: https://www.bartneck.de/2019/04/21/lego-brick-dimensions-and-
measurements/. [Accessed: 06-Dec-2022].

[2] “Simple machines – principle models: Gears,” LEGO® Education. [Online]. Available:
https://education.lego.com/en-us/lessons/sm/gears#contemplate. [Accessed: 06-Dec-2022].

[3] Introduction to programming: VEX IQ. [Online]. Available:
http://cmra.rec.ri.cmu.edu/products/teaching_robotc_vexiq/. [Accessed: 06-Dec-2022].

Appendix A

void configureAllSensors()

{

 SensorType[S1] = sensorEV3_Touch;

 SensorType[S2] = sensorEV3_Ultrasonic;

 SensorType[S3] = sensorEV3_Color;

 wait1Msec(50);

 SensorMode[S3] = modeEV3Color_Color;

 wait1Msec(50);

 SensorType[S4] = sensorEV3_Gyro;

 wait1Msec(50);

 SensorMode[S4] = modeEV3Gyro_Calibration;

 wait1Msec(100);

 SensorMode[S4] = modeEV3Gyro_RateAndAngle;

 wait1Msec(50);

}

task EmergencyStop()

{

 while(SensorValue[S1]!=1)

 Group 20 Stream 8

36

 {}

 stopAllTasks();

}

void drive(int motor_power)//powers both drive motors with the same power

{

 motor[motorA] = motor[motorD] = motor_power;

}

void driveall(int motor_power_A, int motor_power_D, int
motor_power_c)//powers both motors independently

{

 motor[motorA] = motor_power_A;

 motor[motorD] = motor_power_D;

 motor[motorC] = motor_power_c;

}

void Test_Function()

{

 while(!getButtonPress(buttonEnter))

 {}

 drive(30);

 wait1Msec(2000);

 drive(0);

 wait1Msec(1000);

 drive(-30);

 wait1Msec(2000);

 drive(0);

 resetGyro(S4);

 driveall(-20,20,0);

 while (abs(getGyroDegrees(S4))<360)

 {}

 drive(0);

 Group 20 Stream 8

37

 resetGyro(S4);

}

int Number_of_players()

{

 int pressCount = 0;

 while(!getButtonPress(buttonEnter))

 {

 displayBigTextLine(2,"Enter # of ");

 displayBigTextLine(6,"players: %d",pressCount);

 if(getButtonPress(buttonRight))

 {

 pressCount+=1;

 wait1Msec(5);

while(getButtonPress(buttonRight))

 { }

 }

 if(getButtonPress(buttonLeft))

 {

 pressCount-=1;

 wait1Msec(5);

while(getButtonPress(buttonLeft))

 { }

 }

 }

 return pressCount;

}

int input_error()

{

 int player_count = 0;

 Group 20 Stream 8

38

 while(player_count < 1 || player_count > 12)

 {

 eraseDisplay();

 player_count = Number_of_players();

 wait1Msec(500);

 eraseDisplay();

 if(player_count < 1 || player_count > 12)

 {

 displayBigTextLine(2,"invalid input");

 wait1Msec(3000);

 eraseDisplay();

 }

 }

 return player_count;

}

int Number_of_cards()

{

 int pressCount = 0;

 while(!getButtonPress(buttonEnter))

 {

 displayBigTextLine(2,"Enter # of");

 displayBigTextLine(6, "cards: %d",pressCount);

 if(getButtonPress(buttonRight))

 {

 pressCount+=1;

 wait1Msec(5);

while(getButtonPress(buttonRight))

 Group 20 Stream 8

39

 { }

 }

 if(getButtonPress(buttonLeft))

 {

 pressCount-=1;

 wait1Msec(5);

while(getButtonPress(buttonLeft))

 { }

 }

 }

 return pressCount;

}

int cards_error(int players)

{

 int cards_count = 0;

 while(cards_count < 1 || cards_count*players > 52)

 {

 eraseDisplay();

 cards_count = Number_of_cards();

 wait1Msec(500);

 eraseDisplay();

 if(cards_count < 1 || cards_count*players > 52)

 {

 displayBigTextLine(2,"invalid
input");

 wait1Msec(3000);

 eraseDisplay();

 }

 }

 Group 20 Stream 8

40

 return cards_count;

}

float drive_to_colour(int colour)

{

 nMotorEncoder(motorA)=0;

 float distance = 0;

 drive(30);

 while(SensorValue[S3] != colour)

 {}

 drive(0);

 distance = nMotorEncoder(motorA);

 nMotorEncoder(motorA) = 0;

 return distance;

}

float angle_to_rotate(int players)

{

 return 360.0/players;

}

void rotatedealer(int players)

{

 float angle = angle_to_rotate(players);

 resetGyro(S4);

 driveall(-30,30,0);

 while (abs(getGyroDegrees(S4))<abs(angle))

 {}

 drive(0);

}

 Group 20 Stream 8

41

void dispense_cards(int players)

{

 for(int count = 1; count<=players; count++)

 {

 driveall(0,0,-22);

 wait1Msec(360);

 driveall(0,0,15);

 wait1Msec(800);

 rotatedealer(players);

 wait1Msec(2000);

 }

}

int RemainderDispense(int players, int cards)

{

 nMotorEncoder(motorA)=0;

 int remainder = 52-players*cards;

 int count = 0;

 while(count<(players*cards))

 {

 dispense_cards(players);

 count+=players;

 }

 return remainder;

}

void Exit_Code (int players, float distance, int remainder)

{

 int time = 300*remainder;

 Group 20 Stream 8

42

 if (players %2 == 0) //means even number of players

 {

 rotatedealer(players*2);

 wait1Msec(500);

 nMotorEncoder(motorA) = 0;

 drive (-25);

 while (abs(nMotorEncoder[motorA])<distance)

 {}

 drive (0);

 wait1Msec (500);

 driveall (0,0,-15);

 wait1Msec(time);

 driveall (0,0,0);

 displayBigTextLine(2, "%d cards were dealt", 52- r

 emainder);

 wait1Msec(10000);

 }

 else

 {

 nMotorEncoder(motorA) = 0;

 drive (-25);

 while (abs(nMotorEncoder[motorA])<distance)

 {}

 drive (0);

 wait1Msec (500);

 driveall (0,0,-15);

 Group 20 Stream 8

43

 wait1Msec(time);

 driveall (0,0,0);

 displayBigTextLine(2, "%d cards", 52-
remainder);

 displayBigTextLine(5, "were dealt");

 wait1Msec(10000);

 }

 eraseDisplay();

 stopAllTasks();

}

task main()

{

 startTask(EmergencyStop);

 configureAllSensors();

 Test_Function();

 int player_count = input_error();

 wait1Msec(1000);

 int cards_count = cards_error(player_count);

 wait1Msec(1000);

 float radius = drive_to_colour((int)colorRed);

 Group 20 Stream 8

44

 wait1Msec(2000);

 int remainder = RemainderDispense(player_count,cards_count);

 eraseDisplay();

 Exit_Code(player_count,radius,remainder);

}

	Introduction
	Scope
	Constraints and Criteria
	Requirements
	Constraints
	Valuable and Invaluable Constraints and Requirements

	Mechanical Design and Implementation
	Overall description of the mechanical design
	Updates and Changes to the Design
	Progress 1 (November 8th)
	Progress 2 (November 10th – 12th)
	Progress 3 (November 14th)
	Progress 4 (November 16th):
	Progress 5 (November 18th):
	Progress 6 (November 21st):
	Progress 7 (November 22nd):
	Progress 8 (November 23rd):

	Software Design and Implementation
	Task list
	Functions
	Test_ Function (parameters: none, return type void)
	Drive_ to _Colour (parameters: int colour, return type float)
	Rotate _dealer (parameters: int players, return type void):
	Number_of_players(parameters: none, return type int)
	Input_error(parameters: none, return type int)
	Number_of_cards(parameters: none, return type int):
	Cards_error(parameters: int players, return type int):
	Dispense_cards(parameters: int players, return type void):
	Remainder Dispense(parameters: int players and cards, return type int)
	Exit_code (parameters: int players, float distance, int remainder, return type void)

	Trade-offs
	Choice of variable type
	Testing
	Problems
	Final Constraints List

	Project Plan
	Conclusion
	Recommendations
	Mechanical Design:
	Software Recommendations:

	Back Matter
	References
	Appendix A

